Radiative Forcing by Well-mixed Greenhouse Gases: Comparison of IPCC Models

William Collins

http://www.cgd.ucar.edu/~wcollins

National Center for Atmospheric Research

Boulder, Colorado, USA

Co-authors: V. Ramaswamy, M.D. Schwarzkopf, Y. Sun, R.W. Portmann, Q. Fu, S.E.B. Casanova, J.-L. Dufresne, D.W. Fillmore, P.M.D. Forster, V.Y. Galin, L.K. Gohar, W.J. Ingram, D.P. Kratz, M.-P. Lefebvre, J. Li, P. Marquet, V. Oinas, Y. Tsushima, T. Uchiyama and W.Y. Zhong

Goals of this Study

Radiative Transfer Model Intercomparison Project (RTMIP)

- · Compare forcing by well-mixed GHGs from:
 - GCMs participating in the IPCC AR4
 - Line-by-line (LBL) codes: benchmarks
- Determine accuracy of GCM codes under idealized conditions.
- Types of forcing considered:
 - Present-day preindustrial changes in WMGHGs
 - $2 \times CO_2 1 \times CO_2$ and $4 \times CO_2 1 \times CO_2$
 - Combinations of increased CH₄, N₂O, and CFCs
 - Feedbacks from increased H₂O

Design of the Intercomparison

Comparison of instantaneous forcing (not flux):

- Stratospheric adjustment is not included.
- Instantaneous forcings are included in WGCM protocol for IPCC simulations.

Calculations are for clear-sky conditions.

- We use a climatological mid-latitude summer profile.
- Including clouds would complicate the intercomparisons.

Radiative effects of constituents:

- Absorption by H₂O, O₃, and WMGHGs
- Rayleigh scattering
- Self and foreign line broadening

Participating AOGCM and LBL groups

AOGCM Groups

Originating group ^a	Country	Model
BCCR	Norway	BCCR-BCM2.0
CCCma	Canada	CGCM3.1(T47/T63)
CCSR/NIES/FRCGC	Japan	${\rm MIROC3.2 (medres/hires)}$
CNRM	France	CNRM-CM3
GFDL	USA	GFDL-CM2.0/2.1
GISS	USA	GISS-EH/ER
INM	Russia	INM-CM3.0
IPSL	France	IPSL-CM4
LASG/IAP	China	FGOALS-g1.0
MIUB/METRI/KMA	Germany/Korea	ECHO-G
MPIfM	Germany	ECHAM5/MPI-OM
MRI	Japan	MRI-CGCM2.3.2
NCAR	USA	CCSM3
NCAR	USA	PCM
UKMO	UK	HadCM3
UKMO	UK	HadGEM1

LBL Modelers

Originating group ^a	Country	Model	Reference
GFDL	USA	GFDL LBL	Schwarzkopf and Fels [1985]
GISS	USA	LBL3	_
ICSTM	UK	GENLN2	Edwards [1992]; Zhong et al. [2001]
LaRC	USA	MRTA	Kratz and Rose [1999]
UR	UK	RFM	Dudhia [1997]; Stamnes et al. [1988]

- There are 16 groups submitting simulations from 23 AOGCMs to the IPCC AR4.
- RTMIP includes 14 of these groups and 20 of the AOGCMs.

Shortwave radiative forcing at the surface

Forcing

Longwave radiative forcing at 200 mb

1.2 | 1.0 |

Forcing

Forcing by historical increases in CO2

Longwave

Forcing by historical increase in WMGHGs

Longwave

Forcing by methane and nitrous oxide

Longwave

Forcing by methane + CFCs

Longwave

Forcing by nitrous oxide + CFCs

Longwave

Forcing by water vapor feedback

Longwave

Change in heating rates by CO2

Longwave

Change in heating rates by CH₄ and N₂O

Change in heating rates by WMGHGs

Longwave

WMGHGs: 1860→2000 values (LW) 200 400 800 AOGCMs LBLs 1000 -0.15 -0.10 -0.05 -0.00 0.05 0.10 0.15 δQ_{LW} (°K/day)

Change in heating rates by H2O

Longwave

Trends in Ocean Temperature: Upper 300m

(Results from CCSM3 Ensemble)

Increases in Global Ocean Temperatures

(Results from CCSM3 Ensemble)

Gent et al, 2005

CERES STM 11/2/2005, Hampton, VA

Change in Clear-Sky Insolation in IPCC Runs

STM 05, Hampton, VA

Diagnosed forcings for AOGCM integrations (SRES A1B scenario)

Conclusions

- No sign errors in the ensemble-mean forcings from AOGCMs!
 - Out of 228 individual forcing calculations, there is only sign error for one model.
- Forcing by historical changes in WMGHGs:
 - Mean LW forcings agree to within ±0.12 Wm⁻².
 - Individual LW forcings range from 1.5 to 2.7 Wm⁻² at TOM.
 - This adversely affects separation of forcing from response.
 - Mean SW forcings differ by up to 0.37 Wm⁻² (43% error).
 - Large SW errors are related to omission of CH_4 and N_2O .
- Largest forcing biases occur at the surface level:
 - Majority of the differences in mean forcings are significant.
 - AOGCM RT codes have been designed to produce reasonable forcings at the tropopause.
 - Developers also should insure accuracy of forcing at the 15% 2005 Hampton, VA